Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of air quality in eastern China and its interaction with other regions of the world

Identifieur interne : 000140 ( PascalFrancis/Corpus ); précédent : 000139; suivant : 000141

Analysis of air quality in eastern China and its interaction with other regions of the world

Auteurs : CHUNSHENG ZHAO ; XUEXI TIE ; GELI WANG ; YU QIN ; PEICAI YANG

Source :

RBID : Pascal:07-0072636

Descripteurs français

English descriptors

Abstract

In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NOx concentrations are also high in eastern China. The high CO and NOx concentrations produce modest levels of O3 concentrations during summer (about 40 to 50 ppbv) and very low O3 during winter (about 10 to 20 ppbv) in eastern China. The calculated NO2 column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O3 is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO2 has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NOx, which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO, concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O3 concentrations. During winter, the local emissions reduce the surface O3 concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O3 concentration in eastern China.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0167-7764
A02 01      @0 JATCE2
A03   1    @0 J. atmos. chem.
A05       @2 55
A06       @2 3
A08 01  1  ENG  @1 Analysis of air quality in eastern China and its interaction with other regions of the world
A11 01  1    @1 CHUNSHENG ZHAO
A11 02  1    @1 XUEXI TIE
A11 03  1    @1 GELI WANG
A11 04  1    @1 YU QIN
A11 05  1    @1 PEICAI YANG
A14 01      @1 Department of Atmospheric Sciences, School of Physics, PeKing University @2 Beijing @3 CHN @Z 1 aut. @Z 4 aut.
A14 02      @1 National Center for Atmospheric Research @2 Boulder, CO @3 USA @Z 2 aut.
A14 03      @1 Institute of Atmospheric Physics, Chinese Academic @2 Beijing @3 CHN @Z 2 aut. @Z 3 aut. @Z 5 aut.
A20       @1 189-204
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 19998 @5 354000139095110010
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 07-0072636
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of atmospheric chemistry
A66 01      @0 NLD
C01 01    ENG  @0 In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NOx concentrations are also high in eastern China. The high CO and NOx concentrations produce modest levels of O3 concentrations during summer (about 40 to 50 ppbv) and very low O3 during winter (about 10 to 20 ppbv) in eastern China. The calculated NO2 column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O3 is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO2 has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NOx, which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO, concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O3 concentrations. During winter, the local emissions reduce the surface O3 concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O3 concentration in eastern China.
C02 01  X    @0 001D16C02
C03 01  X  FRE  @0 Troposphère @5 01
C03 01  X  ENG  @0 Troposphere @5 01
C03 01  X  SPA  @0 Troposfera @5 01
C03 02  X  FRE  @0 Qualité air @5 02
C03 02  X  ENG  @0 Air quality @5 02
C03 02  X  SPA  @0 Calidad aire @5 02
C03 03  X  FRE  @0 Pollution air @5 03
C03 03  X  ENG  @0 Air pollution @5 03
C03 03  X  SPA  @0 Contaminación aire @5 03
C03 04  X  FRE  @0 Aérosol @5 04
C03 04  X  ENG  @0 Aerosols @5 04
C03 04  X  SPA  @0 Aerosol @5 04
C03 05  3  FRE  @0 Chimie atmosphérique @5 05
C03 05  3  ENG  @0 Atmospheric chemistry @5 05
C03 06  X  FRE  @0 Carbone monoxyde @2 NK @2 FX @5 06
C03 06  X  ENG  @0 Carbon monoxide @2 NK @2 FX @5 06
C03 06  X  SPA  @0 Carbono monóxido @2 NK @2 FX @5 06
C03 07  X  FRE  @0 Azote oxyde @5 07
C03 07  X  ENG  @0 Nitrogen oxide @5 07
C03 07  X  SPA  @0 Nitrógeno óxido @5 07
C03 08  X  FRE  @0 Composition chimique @5 08
C03 08  X  ENG  @0 Chemical composition @5 08
C03 08  X  SPA  @0 Composición química @5 08
C03 09  X  FRE  @0 Variation saisonnière @5 09
C03 09  X  ENG  @0 Seasonal variation @5 09
C03 09  X  SPA  @0 Variación estacional @5 09
C03 10  X  FRE  @0 Source pollution @5 10
C03 10  X  ENG  @0 Pollution source @5 10
C03 10  X  SPA  @0 Fuente polución @5 10
C03 11  X  FRE  @0 Transport polluant grande distance @5 11
C03 11  X  ENG  @0 Long range pollutant transport @5 11
C03 11  X  SPA  @0 Transporte contaminante gran distancia @5 11
C03 12  X  FRE  @0 Polluant secondaire @5 12
C03 12  X  ENG  @0 Secondary pollutant @5 12
C03 12  X  SPA  @0 Contaminante secundario @5 12
C03 13  X  FRE  @0 Ozone @2 NK @2 FX @5 13
C03 13  X  ENG  @0 Ozone @2 NK @2 FX @5 13
C03 13  X  SPA  @0 Ozono @2 NK @2 FX @5 13
C03 14  X  FRE  @0 Distribution concentration @5 14
C03 14  X  ENG  @0 Concentration distribution @5 14
C03 14  X  SPA  @0 Distribución concentración @5 14
C03 15  X  FRE  @0 Relation source puits @5 15
C03 15  X  ENG  @0 Source sink relationship @5 15
C03 15  X  SPA  @0 Relación fuente sumidero @5 15
C03 16  X  FRE  @0 Simulation numérique @5 16
C03 16  X  ENG  @0 Numerical simulation @5 16
C03 16  X  SPA  @0 Simulación numérica @5 16
C03 17  X  FRE  @0 Donnée observation @5 17
C03 17  X  ENG  @0 Observation data @5 17
C03 17  X  SPA  @0 Dato observación @5 17
C03 18  X  FRE  @0 Observation par satellite @5 18
C03 18  X  ENG  @0 Satellite observation @5 18
C03 18  X  SPA  @0 Observación por satélite @5 18
C03 19  X  FRE  @0 Chine Est @2 NG @4 INC @5 27
C03 20  X  FRE  @0 Télédétection spatiale @5 40
C03 20  X  ENG  @0 Space remote sensing @5 40
C03 20  X  SPA  @0 Teledetección espacial @5 40
N21       @1 043

Format Inist (serveur)

NO : PASCAL 07-0072636 INIST
ET : Analysis of air quality in eastern China and its interaction with other regions of the world
AU : CHUNSHENG ZHAO; XUEXI TIE; GELI WANG; YU QIN; PEICAI YANG
AF : Department of Atmospheric Sciences, School of Physics, PeKing University/Beijing/Chine (1 aut., 4 aut.); National Center for Atmospheric Research/Boulder, CO/Etats-Unis (2 aut.); Institute of Atmospheric Physics, Chinese Academic/Beijing/Chine (2 aut., 3 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of atmospheric chemistry; ISSN 0167-7764; Coden JATCE2; Pays-Bas; Da. 2006; Vol. 55; No. 3; Pp. 189-204; Bibl. 1 p.3/4
LA : Anglais
EA : In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NOx concentrations are also high in eastern China. The high CO and NOx concentrations produce modest levels of O3 concentrations during summer (about 40 to 50 ppbv) and very low O3 during winter (about 10 to 20 ppbv) in eastern China. The calculated NO2 column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O3 is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO2 has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NOx, which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO, concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O3 concentrations. During winter, the local emissions reduce the surface O3 concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O3 concentration in eastern China.
CC : 001D16C02
FD : Troposphère; Qualité air; Pollution air; Aérosol; Chimie atmosphérique; Carbone monoxyde; Azote oxyde; Composition chimique; Variation saisonnière; Source pollution; Transport polluant grande distance; Polluant secondaire; Ozone; Distribution concentration; Relation source puits; Simulation numérique; Donnée observation; Observation par satellite; Chine Est; Télédétection spatiale
ED : Troposphere; Air quality; Air pollution; Aerosols; Atmospheric chemistry; Carbon monoxide; Nitrogen oxide; Chemical composition; Seasonal variation; Pollution source; Long range pollutant transport; Secondary pollutant; Ozone; Concentration distribution; Source sink relationship; Numerical simulation; Observation data; Satellite observation; Space remote sensing
SD : Troposfera; Calidad aire; Contaminación aire; Aerosol; Carbono monóxido; Nitrógeno óxido; Composición química; Variación estacional; Fuente polución; Transporte contaminante gran distancia; Contaminante secundario; Ozono; Distribución concentración; Relación fuente sumidero; Simulación numérica; Dato observación; Observación por satélite; Teledetección espacial
LO : INIST-19998.354000139095110010
ID : 07-0072636

Links to Exploration step

Pascal:07-0072636

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analysis of air quality in eastern China and its interaction with other regions of the world</title>
<author>
<name sortKey="Chunsheng Zhao" sort="Chunsheng Zhao" uniqKey="Chunsheng Zhao" last="Chunsheng Zhao">CHUNSHENG ZHAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Atmospheric Sciences, School of Physics, PeKing University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Atmospheric Physics, Chinese Academic</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Geli Wang" sort="Geli Wang" uniqKey="Geli Wang" last="Geli Wang">GELI WANG</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Atmospheric Physics, Chinese Academic</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yu Qin" sort="Yu Qin" uniqKey="Yu Qin" last="Yu Qin">YU QIN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Atmospheric Sciences, School of Physics, PeKing University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Peicai Yang" sort="Peicai Yang" uniqKey="Peicai Yang" last="Peicai Yang">PEICAI YANG</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Atmospheric Physics, Chinese Academic</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0072636</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0072636 INIST</idno>
<idno type="RBID">Pascal:07-0072636</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000140</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Analysis of air quality in eastern China and its interaction with other regions of the world</title>
<author>
<name sortKey="Chunsheng Zhao" sort="Chunsheng Zhao" uniqKey="Chunsheng Zhao" last="Chunsheng Zhao">CHUNSHENG ZHAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Atmospheric Sciences, School of Physics, PeKing University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Atmospheric Physics, Chinese Academic</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Geli Wang" sort="Geli Wang" uniqKey="Geli Wang" last="Geli Wang">GELI WANG</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Atmospheric Physics, Chinese Academic</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yu Qin" sort="Yu Qin" uniqKey="Yu Qin" last="Yu Qin">YU QIN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Atmospheric Sciences, School of Physics, PeKing University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Peicai Yang" sort="Peicai Yang" uniqKey="Peicai Yang" last="Peicai Yang">PEICAI YANG</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Atmospheric Physics, Chinese Academic</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of atmospheric chemistry</title>
<title level="j" type="abbreviated">J. atmos. chem.</title>
<idno type="ISSN">0167-7764</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of atmospheric chemistry</title>
<title level="j" type="abbreviated">J. atmos. chem.</title>
<idno type="ISSN">0167-7764</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Air pollution</term>
<term>Air quality</term>
<term>Atmospheric chemistry</term>
<term>Carbon monoxide</term>
<term>Chemical composition</term>
<term>Concentration distribution</term>
<term>Long range pollutant transport</term>
<term>Nitrogen oxide</term>
<term>Numerical simulation</term>
<term>Observation data</term>
<term>Ozone</term>
<term>Pollution source</term>
<term>Satellite observation</term>
<term>Seasonal variation</term>
<term>Secondary pollutant</term>
<term>Source sink relationship</term>
<term>Space remote sensing</term>
<term>Troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Qualité air</term>
<term>Pollution air</term>
<term>Aérosol</term>
<term>Chimie atmosphérique</term>
<term>Carbone monoxyde</term>
<term>Azote oxyde</term>
<term>Composition chimique</term>
<term>Variation saisonnière</term>
<term>Source pollution</term>
<term>Transport polluant grande distance</term>
<term>Polluant secondaire</term>
<term>Ozone</term>
<term>Distribution concentration</term>
<term>Relation source puits</term>
<term>Simulation numérique</term>
<term>Donnée observation</term>
<term>Observation par satellite</term>
<term>Chine Est</term>
<term>Télédétection spatiale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NO
<sub>x</sub>
concentrations are also high in eastern China. The high CO and NO
<sub>x</sub>
concentrations produce modest levels of O
<sub>3</sub>
concentrations during summer (about 40 to 50 ppbv) and very low O
<sub>3</sub>
during winter (about 10 to 20 ppbv) in eastern China. The calculated NO
<sub>2</sub>
column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O
<sub>3</sub>
is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO
<sub>2</sub>
has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NO
<sub>x</sub>
, which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO, concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O
<sub>3</sub>
concentrations. During winter, the local emissions reduce the surface O
<sub>3</sub>
concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O
<sub>3</sub>
concentration in eastern China.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0167-7764</s0>
</fA01>
<fA02 i1="01">
<s0>JATCE2</s0>
</fA02>
<fA03 i2="1">
<s0>J. atmos. chem.</s0>
</fA03>
<fA05>
<s2>55</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analysis of air quality in eastern China and its interaction with other regions of the world</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHUNSHENG ZHAO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XUEXI TIE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GELI WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YU QIN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PEICAI YANG</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Atmospheric Sciences, School of Physics, PeKing University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Atmospheric Physics, Chinese Academic</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>189-204</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19998</s2>
<s5>354000139095110010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0072636</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of atmospheric chemistry</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NO
<sub>x</sub>
concentrations are also high in eastern China. The high CO and NO
<sub>x</sub>
concentrations produce modest levels of O
<sub>3</sub>
concentrations during summer (about 40 to 50 ppbv) and very low O
<sub>3</sub>
during winter (about 10 to 20 ppbv) in eastern China. The calculated NO
<sub>2</sub>
column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O
<sub>3</sub>
is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO
<sub>2</sub>
has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NO
<sub>x</sub>
, which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO, concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O
<sub>3</sub>
concentrations. During winter, the local emissions reduce the surface O
<sub>3</sub>
concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O
<sub>3</sub>
concentration in eastern China.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Qualité air</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Air quality</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Calidad aire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Chimie atmosphérique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Atmospheric chemistry</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Carbone monoxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Carbon monoxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Carbono monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Azote oxyde</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nitrogen oxide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nitrógeno óxido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Composition chimique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Chemical composition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Composición química</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Variation saisonnière</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Seasonal variation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Variación estacional</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Source pollution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Pollution source</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Fuente polución</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transport polluant grande distance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Long range pollutant transport</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transporte contaminante gran distancia</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Polluant secondaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Secondary pollutant</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Contaminante secundario</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Distribution concentration</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Concentration distribution</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Distribución concentración</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Relation source puits</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Source sink relationship</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Relación fuente sumidero</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Donnée observation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Observation data</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Dato observación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Chine Est</s0>
<s2>NG</s2>
<s4>INC</s4>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Télédétection spatiale</s0>
<s5>40</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Space remote sensing</s0>
<s5>40</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Teledetección espacial</s0>
<s5>40</s5>
</fC03>
<fN21>
<s1>043</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 07-0072636 INIST</NO>
<ET>Analysis of air quality in eastern China and its interaction with other regions of the world</ET>
<AU>CHUNSHENG ZHAO; XUEXI TIE; GELI WANG; YU QIN; PEICAI YANG</AU>
<AF>Department of Atmospheric Sciences, School of Physics, PeKing University/Beijing/Chine (1 aut., 4 aut.); National Center for Atmospheric Research/Boulder, CO/Etats-Unis (2 aut.); Institute of Atmospheric Physics, Chinese Academic/Beijing/Chine (2 aut., 3 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of atmospheric chemistry; ISSN 0167-7764; Coden JATCE2; Pays-Bas; Da. 2006; Vol. 55; No. 3; Pp. 189-204; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NO
<sub>x</sub>
concentrations are also high in eastern China. The high CO and NO
<sub>x</sub>
concentrations produce modest levels of O
<sub>3</sub>
concentrations during summer (about 40 to 50 ppbv) and very low O
<sub>3</sub>
during winter (about 10 to 20 ppbv) in eastern China. The calculated NO
<sub>2</sub>
column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O
<sub>3</sub>
is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO
<sub>2</sub>
has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NO
<sub>x</sub>
, which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO, concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O
<sub>3</sub>
concentrations. During winter, the local emissions reduce the surface O
<sub>3</sub>
concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O
<sub>3</sub>
concentration in eastern China.</EA>
<CC>001D16C02</CC>
<FD>Troposphère; Qualité air; Pollution air; Aérosol; Chimie atmosphérique; Carbone monoxyde; Azote oxyde; Composition chimique; Variation saisonnière; Source pollution; Transport polluant grande distance; Polluant secondaire; Ozone; Distribution concentration; Relation source puits; Simulation numérique; Donnée observation; Observation par satellite; Chine Est; Télédétection spatiale</FD>
<ED>Troposphere; Air quality; Air pollution; Aerosols; Atmospheric chemistry; Carbon monoxide; Nitrogen oxide; Chemical composition; Seasonal variation; Pollution source; Long range pollutant transport; Secondary pollutant; Ozone; Concentration distribution; Source sink relationship; Numerical simulation; Observation data; Satellite observation; Space remote sensing</ED>
<SD>Troposfera; Calidad aire; Contaminación aire; Aerosol; Carbono monóxido; Nitrógeno óxido; Composición química; Variación estacional; Fuente polución; Transporte contaminante gran distancia; Contaminante secundario; Ozono; Distribución concentración; Relación fuente sumidero; Simulación numérica; Dato observación; Observación por satélite; Teledetección espacial</SD>
<LO>INIST-19998.354000139095110010</LO>
<ID>07-0072636</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000140 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000140 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0072636
   |texte=   Analysis of air quality in eastern China and its interaction with other regions of the world
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023